Assessment Schedule - 2005

Chemistry: Describe the nature of structure and bonding in different substances (90308)

Evidence Statement

Q	Evidence		Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
1	(a) H—S—H :Cl-P—Cl: :Cl: H H—C—Br: H :Cl C=O :Cl	(b) bent / V-shape / angular trigonal pyramid / triangular pyramid tetrahedral trigonal planar	Lewis structure and shape correct for 2 molecules. (ie 2 rows correct) OR All Lewis structures correct All electrons must be clearly shown as pairs.	All Lewis structures and shapes correct (showing all non-bonding electrons and multiple bonding).	
2(a) (b)	CO ₂ has non-polar molecules. The C–O bonds of CO ₂ are polar due to the differing electronegativities of C and O. However, as there are only 2 electron repulsions about the central C atom, the polar bonds are symmetrical about the C atom / linear shape, and the effect of these polar bonds / bond dipoles is cancelled, so that the molecule is non-polar. SO ₂ has polar molecules. The S–O bonds of SO ₂ are polar due to the differing electronegativities of S and O. There are 3 electron repulsions about the central S atom (trigonal planar), however, the lone pair of electrons on the S atom causes the S–O bonds to occupy a bent or V shape around the central S. Therefore the effect of these polar bonds / bond dipoles is not cancelled, so that the molecule is polar.		Both polarities correct with a simple supporting statement involving 2 ideas (for each molecule). eg shape correct and symmetry / asymmetry of both molecules identified OR presence of C–O and S–O polar bonds identified and shape of molecule correct.	Both polarities correct and limited discussion / some linking of ideas eg refers to symmetry / asymmetry of bond arrangement with molecular shape, but no reference to why bonds are polar. ie identifies bonds are polar symmetry and asymmetry of bond arrangement (or bond dipoles) due to shape ie 'something' missing from E answer.	Both polarities correct and a full discussion of each compound that includes reference to: • electronegativity difference of atoms identified • polarity of bonds / bond dipoles identified • shape of molecule identified as a result of electron repulsions. • Lone pair of electrons on S of SO ₂ leads to 3 e repulsions. • symmetry and asymmetry of polar bonds / bond dipoles due to shape of molecule.

Q	Evidence		Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence	
3	(a) ions atoms molecules	(b) ionic bond / electrostatic forces between ions covalent bond Van der Waals / intermolecular / permanent dipole attraction (not VDW, not molecular bond).	(c) high high low	2 rows correct.	all correct	
4(a)	B Metallic C Molecular D Covalent network E Molecular F Ionic		All correct.			
4(b)	In the solid state, the ions are held in fixed positions by strong electrostatic attractions, or, ionic bonds. When molten, the charged ions are separated and free to move and conduct electricity.		One state explained. ie Recognises ions in the solid cannot move as held in fixed positions OR Recognises ions in liquid are separated and freely moving and so free moving charge can conduct electricity. (Reference to electrons incorrect.)	Correct comparison of conduction or lack of, for solid and liquid states.		

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
5(a)	Silver atoms are held together in a 3-D lattice by metallic bonding , in which valence electrons are attracted to the nuclei of neighbouring atoms. As this is a non-directional force, layers of atoms can slide over each other without breaking the metallic bond and disrupting the structure and breaking the metal.	One "very good" example (particle, force, property). OR Particles and force identified for 2	Properties for 2 substances are explained, but may lack some detail. Includes identifying type of particle and force between particles.	Type of particle (cannot be Ag ⁺ / Cu ²⁺), and force between particles identified. Model of ions in sea of electrons also acceptable. Nuclei (of atom) acceptable if
5(b)	Copper atoms are held together in a 3-D lattice by metallic bonding, in which valence electrons are attracted to the nuclei of neighbouring atoms. Conduction of electricity requires free moving charges, which are the moving valence electrons.	examples ((a) and (b) considered separately).	If good answers (b) okay if only electrons referred to.	clear. NOT protons. If good answers (b) okay if only electrons referred to.
5(c)	Silicon dioxide consists of silicon and oxygen atoms held together by covalent bonds in a tetrahedral arrangement, so that a 3-D network exists. As the covalent bonds are strong , they are difficult to overcome and break, making it difficult to separate the atoms, so the structure has a high melting point.			Properties for the 3 substances are correctly and clearly explained.
6	Iodine consists of I ₂ molecules and weak inter molecular forces / weak Van der Waals forces exist between the molecules. As these attractions are weak, the molecules are easily separated and the melting point is low. Iodine molecules are non-polar , therefore iodine is soluble in a non-polar solvent such as cyclohexane. Since both molecules have similar weak intermolecular forces, then weak forces will exist between the two different molecules. Potassium iodide is an ionic solid consisting of ions held together by strong ionic bonds / electrostatic attractions. As these attractions are strong , more energy is needed to separate the ions (than the molecules of iodine) so that potassium iodide has a high melting point. Ionic solids are soluble in water as the ions are separated from the lattice due to attraction towards the polar water molecules.	One good answer. (If solubility of iodine in cyclohexane must refer to similar strengths of intermolecular forces.) Includes: • particle (must be clear that it is a molecule for I ₂) • force • strength of force.	Full and correct discussion for three properties. eg melting point for both, solubility for one. Includes:	Full and correct discussion for each property. ie Melting point for both and solubility for both. ie four properties. Includes: particle force strength of force.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
FOUR opportunities answered at Achievement level or higher.	FOUR opportunities answered at Merit level or higher.	FIVE opportunities answered with TWO at Excellence level, TWO at Merit level and ONE at Achievement.
4 × A	4 × M	2 × E plus 2 × M plus 1 × A